不等式约束的序列二次规划(SQP)

数学理论 同时被 2 个专栏收录
27 篇文章 1 订阅
6 篇文章 2 订阅

讲完等式约束的SQP,接下来就是不等式约束的SQP,其实两者的算法是完全没有区别的,唯一的就是因为引入了不等式约束,再推导上面就会去考虑近似KKT条件,从这个角度进行思考。解当前的问题就是解这个问题的对偶问题,两者在对偶间隙为0的时候取到最优点,取得的最优点满足KKT条件。

接下来就是SQP with inequality constraints的推导,解如下的问题:
在这里插入图片描述
离散化后,我们现在要做的就是在第K步的x_k和mu_k的基础上,找到一个方向,使得x_k+1和mu_k+1能够逼近下面的kkt条件:
在这里插入图片描述
离散化后的写法为:
在这里插入图片描述
对拉格朗日函数的一阶导数和二阶导数为:
在这里插入图片描述
由此可以将上面的KKT条件改写为:
在这里插入图片描述
这个KKT条件的写法,其实就是如下二次规划问题的KKT条件:
在这里插入图片描述
我们通过求解这个QP问题,得到delta,再根据
在这里插入图片描述
求解mu, 这样就获得了新的x和mu,然后继续迭代求解,知道满足终止条件。整个算法如下:
在这里插入图片描述

  • 1
    点赞
  • 1
    评论
  • 6
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值