自动驾驶路径规划论文解析(1)

自动驾驶论文解析 专栏收录该内容
10 篇文章 12 订阅

解析论文:A real_time motion planner with trajectory optimization for autonomous vehicles

论文的核心结构是这样的:
1,规划上是时空分离的,横向规划是建立曲率kappa关于位置s的函数,纵向上建立速度v关于位置s的函数。
2,函数建立后使用lattice planner 的方式进行撒点,生成对应的cost function,选择cost 最低的曲线作为最优曲线。
3,完成曲线选取之后还多做一步优化,在时间和空间上进行滚动优化,进一步完善输出结果。
总体的结构如图:
在这里插入图片描述
接下来我们分析每一个模块。
空间上的曲线生成:
关于空间上的曲线生成,我们有一些数学推导,我写在了手稿中:
在这里插入图片描述
可以看出,按照lattice planner的方法,我们希望写出一个曲率kappa关于位置s的多项式,至于多项式应该是几阶的,取决于我们定多少约束。文章中列举了我上图中写的五个约束:起点处的曲率,终点处的曲率,终点处的x位置,终点处的y位置,终点处的heading 对于起点处heading的变换量。五个约束意味着多项式应该是4阶的,所以作者使用了四阶多项式进行空间上的曲线生成。
在这里插入图片描述
作者是这么写的,到底是会议论文,质量就是不行。说的是quartic四阶多项式,写的却是三阶,还乱扯说s也是个位置参量?我反正是佛了。再次强调,这里是四阶多项式。

时间上的曲线生成
作者强调,时间上的曲线生成也应该是关于位置s的多项式,而不是关于时间t的多项式,因为我们刚才在空间上做的曲线生成已经选择了 函数是关于位置S的函数,因此为了保证一致性,这里也是关于s的函数。作者表示这里选择一个三阶函数就差不多了。
在这里插入图片描述
三阶多项式的参量有四个,我们定义四个约束即可:
作者选择了起始点和终点的速度和加速度,其中起点的速度和加速度是从车上直接获得的,终点的速度我们自己采样,终点的加速度我们希望是0,这样直接可以获得这几个参量的close form的表达:
在这里插入图片描述

cost function:
分成了静态cost 和动态 cost, 论文里面大家用的都差不多,没什么好解释的:
在这里插入图片描述
最后的cost function 就是所有项的加权累计:
在这里插入图片描述

进一步速度和轨迹优化,
在这里插入图片描述所谓的进一步优化就是花里胡哨,做法就是稍微放松对终点的约束。对于轨迹优化来说就是我们虽然选择了某条最优曲线,这个规划终点的状态都已定好,现在我们放松一点这个约束,终点可以在这个点的附近稍微动一动,做到微调。速度优化也是一样,终点的采样速度也可以在小范围内微调。这种优化没有意义,因为你不一定保证微调后的曲线能够通过碰撞检测,所以你额外还要做一次碰撞检测,另外微调的目的是让曲线更合理,而对曲线合理性的评估已经通过cost function 给出来了,这里就没有必要多此一举了。

  • 1
    点赞
  • 3
    评论
  • 8
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
ICRA12_A Real-Time Motion Planner with Trajectory Optimization for Autonomous Vehicles.pdf IEEE_CASE2014_Design of Lane Keeping System Using Adaptive Model Predictive Control.pdf IEEE_CDC2012_Werling_AutomaticCollisionAvoidanceUsingModel-predictiveOnlineOptimization.pdf IEEE_ICRA2010_werling-optimal-trajectory-generation-for-dynamic-street-scenarios-in-a-frenet-frame.pdf IEEE_IROS2016_Snider_Automated Tactical Maneuver Discovery, Reasoning and Trajectory Planning for Automated Driving.pdf IEEE_ITSC2005_A new approach to lane guidance systems.pdf IEEE_ITSC2011_Algebraic nonlinear estimation and flatness-based lat lon conrol or automotive vehicles.pdf IEEE_ITSC2011_The H2-Optimal Preview Controller for a Shared Lateral Control.pdf IEEE_ITSC2013_Linear Model Predictive Control for Lane Keeping and Obstacle Avoidance on Low Curvature Roads.pdf IEEE_ITSC2016_Optimal Trajectory Planning for Autonomous Driving Integrating Logical Constraints_An MIQP Perspective.pdf IEEE_IV2010_Safety Verification of Autonomous Vehicles for Coordinated Evasive Maneuvers.pdf IEEE_IV2012_Learning Lane Change Trajectories From On-road Driving Data.pdf IEEE_IV2013_Higher_Order_Sliding_Mode_Control_for_Lateral_Dynamics_V0.pdf IEEE_IV2013_Robust Predictive Control for Semi-Autonomous Vehicles with an certain drivier model.pdf IEEE_IV2013_Snider_Focused Trajectory Planning for Autonomous On-Road Driving.pdf IEEE_TransHMS2017_Modeling, Identification, and Predictive Control of a Driver Steering Assistance System.pdf IEEE_TransSMC_2009Combined Automatic Lane-Keeping and Driver's Steering Through a 2-DOF Control Strategy.pdf" IEEE-TransIE2014_A real time energy optimal trajectory generation method for a servomotor system.pdf IEEE-TransITS2014_Ziegler_Making Bertha Drive-An Autonomous Journey on a Historic Route.pdf IJRR_Journal_2012_Werling_Optimal-trajectories-for-time-critical-street-scenarios-using-discretized-terminal-manifolds.pdf IROS_2015_Tunable and Stable Real-Time Trajectory Planning for Ur
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值